Cold Process Soapmaking Intensive

Presented by
Catherine McGinnis
Soaping101
Overview

• A brief history on soap making
• The basic chemistry of soap making
• Mold choices and preparation
• Soapmaking tools
• Oil properties as they contribute to soap
• Soap colorants (natural vs. man-made)
• Scenting your soap (natural vs. man-made)
• Simple design techniques
• Cut, cure and storage
• Hands on soap making exercise
How well do you know your soaps?
The US FDA defines soap as:

The bulk of the nonvolatile matter in the product consists of an alkali salt of fatty acids and the product is labeled, sold, and represented only as soap.
History of Soapmaking
History of Soapmaking

If this your idea of how soap making began, you are partially correct.
History of Soapmaking

• The first evidence of soap-like substance dates circa 2800 BC by the Babylonians.
• Phoenicians, circa 660 BC

Soaps at this time were made for cleaning wool and cotton.
History of Soapmaking

• The first evidence of soap-like substance dates circa 2800 BC by the Babylonians.
• Phoenicians, circa 660 BC
• First definitive evidence of soap making comes from the Romans.
History of Soapmaking

• History describes Romans making soap from goat tallow and caustic wood ash with salt being added for hardness.

• An actual soap factory or laundry was discovered in the ruins at Pompeii.
History of Soapmaking

• The first evidence of soap-like substance dates circa 2800 BC by the Babylonians.
• Phoenicians, circa 660 BC
• First definitive evidence of soap making comes from the Romans.
• Italy and Spain, circa 8th century
• France, circa 13th century
History of Soapmaking

• The first evidence of soap-like substance dates circa 2800 BC by the Babylonians.
• Phoenicians, circa 660 BC
• First definitive evidence of soap making comes from the Romans.
• Italy and Spain, circa 8th century
• France, circa 13th century
• England, circa 14th century with soaps made from animal fats
History of Soapmaking
History of Soapmaking

• The first evidence of soap-like substance dates circa 2800 BC by the Babylonians.
• Phoenicians, circa 660 BC
• First definitive evidence of soap making comes from the Romans.
• Italy and Spain, circa 8th century
• France, circa 13th century
• England, circa 14th century
• North America, circa mid 1600’s
History of Soapmaking

Aleppo Soap

- From Aleppo, Syria
- Dates back to the 8th century
- Hot process soap
- Made with olive oil, laurel oil, water and lye
- The amount of laurel oil is typically between 2 – 30%

History of Soapmaking

Castile Soap
- From Castile, Spain
- Dates back to the 8th century
- Brought over by the crusaders
- Did not have access to the laurel oil
- Made with 100% olive oil, water and lye
History of Soapmaking

Marseille Soap

• From Marseille, France
• Dates back to the 15th century
• Made with olive oil, vegetable oils, Mediterranean sea water and lye
• Crafted as unmistakable square blocks

Chemistry of Soapmaking
Chemistry of Soapmaking

• The definition of saponification is a chemical reaction between oils or fats and lye to produce glycerin and soap.
Chemistry of Soapmaking

• The definition of saponification is a chemical reaction between oils or fats and lye to produce glycerin and soap.

• The pH scale runs from 0 to 14, with acids at low pH, bases at high pH, and neutral water at 7.
Chemistry of Soapmaking

• The definition of saponification is a chemical reaction between oils or fats and lye to produce glycerin and soap.
• The pH scale runs from 0 to 14, with acids at low pH, bases at high pH, and neutral water at 7.
• On an average, handmade soap has a pH of 10.
Chemistry of Soapmaking

Triglyceride + Alkali/Acid base

\[\text{Triglyceride} + 3 \text{NaOH} / \text{H}_2\text{O} \rightarrow 3 \text{R-} - \text{COONa} + \text{H}_2\text{O} \]

Lye (sodium hydroxide)
Soap
Glycerine
Chemistry of Soapmaking

Oil
Chemistry of Soapmaking

Oil

Lye
Chemistry of Soapmaking

Oil + Lye + Water
Chemistry of Soapmaking

Oil

Lye Water
Chemistry of Soapmaking

Oil + Lye Water
Chemistry of Soapmaking

Soap
Chemistry of Soapmaking

Glycerin is a humectant absorbing water from the air helping to seal in moisture
Soapmaking Molds
Soapmaking Molds

Nearly anything that can hold water can be a soap mold. But how do you know how to adjust your recipe for each mold?
Soapmaking Molds

Loaf Mold
Measuring 2 5/8 x 3 1/8 x 17
Soapmaking Molds

LxWxHx.39 = Oil amount needed
Soapmaking Molds

LxWxHx.39 = Oil amount needed

2 5/8 x 3 1/8 x 17 = 139.45 (total volume)

139.45 x .39 = 54.39 oz of oil
Soapmaking Molds

Loaf Mold

Measuring 3 ½ x 2 ¼ x 10
Soapmaking Molds

3 ½ x 2 ¼ x 15

3.5 x 2.25 x 10 = 78.75

78.75 is the total volume
Soapmaking Molds

3 ½ x 2 ¼ x 15

3.5 x 2.25 x 15 = 78.75

78.75 x .39 = 30.71

31 total oz of oils
Soapmaking Molds

Cylindrical Mold
3.1 x 3.1 x 9.2
Soapmaking Molds

Cylindrical Mold

\((\pi \times \text{radius}^2) \times H = \text{Oil amount needed}\)
Soapmaking Molds

3.1 x 3.1 x 9.2

Radius is half the diameter

3.1 ÷ 2 = 1.55
Soapmaking Molds

3.1 x 3.1 x 9.2

Radius 3.1 ÷ 2 = 1.55

1.55² or 1.55 x 1.55 = 2.4
Soapmaking Molds

\[3.1 \times 3.1 \times 9.2 \]

Radius \(3.1 \div 2 = 1.55 \)

\(1.55^2 \) or \(1.55 \times 1.55 = 2.4 \)

\[\pi \times 2.4 \times 9.2 \]

\[3.14 \times 2.4 \times 9.2 \]

= 69.4 total volume

69.4 \times .39 = 27.1 oz of oils needed
Soapmaking Molds

Odd Sized Mold

Cui \times 0.39 = \text{Oil amount needed}
Soapmaking Molds

Odd Sized Mold
- Fill with water to determine ounces to fill line (6.1 oz)
 - Use online oz to cui converter (11 cui)
 - $11 \times 0.39 = \textbf{4.29 oz of oil needed}$
Soapmaking Tools
Soapmaking Tools

- Accurate scale
- Safety goggles and gloves
- Heat resistant pitchers
- Stainless steel spoons
- Thermometer
- Measuring cups
- Miscellaneous spoons, whisks and silicone spatulas
- Stick blender
- Soap mold
- Paper towels/dishcloths
Oil Properties
Oil Properties

• Choosing oils is a matter of taste.
Oil Properties

• Choosing oils is a matter of taste.
• Achieved outcome will determine oil.
Oil Properties

• Choosing oils is a matter of taste.
• Achieved outcome will determine oil.
• Each lends unique properties.
Oil Properties

TYPES
76 degree, 92 degree, virgin and fractionated

ATTRIBUTES
Bubbly lather
Cleansing
Hardness
White bar
Moisturizing in small amounts

NOTES
Available at grocery store
Promotes skin elasticity
Shelf life of up to 5 years
Relatively inexpensive
Oil Properties

TYPES
Grade A, grade B, pomace, virgin and extra virgin

ATTRIBUTES
- Creamy and stable lather
- Exceptionally mild
- Conditioning
- Moisturizing
- Hard bar

NOTES
- Available at grocery store
- Low lather and can be a bit slimy
- Pomace has a very high level of unsaponifiables
- Relatively inexpensive
Oil Properties

TYPES
Palm, organic refined, unrefined, partially hydrogenated, palm kernel oil

ATTRIBUTES
Rich creamy lather
Mild cleansing
Hardness

NOTES
Low glycerin yield
Color varies depending on the type
Vegan’s substitute for tallow
Inexpensive
Oil Properties

TYPES
Rendered livestock fat
- Beef, deer, sheep, buffalo

ATTRIBUTES
- Rich creamy lather
- Moisturizing
- Super hardness
- White bar
- Mild cleansing

NOTES
- Does not clog pores
- Color varies depending on the type
- Reclamable
- Often free at the butcher
Oil Properties

TYPES
- Medicinal, food grade,
- industrial, Jamaican black

ATTRIBUTES
- Bubbly
- Creamy+ stable lather
- Mild cleansing
- Conditioning
- Moisturizing

NOTES
- Too much will make soap sticky + soft
- A humectant l'attracts moisture to your skin!
- Obtained from the castor bean
- Available at local pharmacy

CASTOR OIL
Oil Properties

SECONDARY OILS

LARD
Lard makes a tremendously hard, white bar with a low, creamy, stable lather that is surprisingly moisturizing.

SOYBEAN OIL
Soybean oil is often used as a portion of a soap making recipe in combination with other oils. It is mild, moisturizing and contributes a low, creamy lather.

SUNFLOWER OIL
It works very nicely with other oils to give a nice, rich, creamy, moisturizing lather.

SHEA BUTTER
Using shea butter for soap making will add a wonderful creamy lather, great conditioning properties and a little hardness to your bar.
Almond Oil
A moisturizing oil that is very light and absorbs well. In soap it produces a low, stable lather.

Canola Oil
Canola, a kind of rapeseed. It gives a nice, low, creamy lather and is moisturizing. It will slow down the rate at which your soap will trace.

Hemp Seed Oil
Hemp seed oil is a deep, green color with a light, nutty smell. It contributes a light, silky lather to soap. It has a very short shelf life.

Jojoba Oil
Jojoba is really a liquid wax. It adds a nice stable lather and has amazing absorption and moisturizing qualities!
Lye Calculation
Lye Calculation

http://www.soapguild.org/soapmakers/resources/lye-calc.php
Lye Calculation

<table>
<thead>
<tr>
<th>oil or fat (acid)</th>
<th>SAP</th>
<th>Hard/Soft</th>
<th>cleansing</th>
<th>fluffy lather</th>
<th>stable lather</th>
<th>skin care</th>
</tr>
</thead>
<tbody>
<tr>
<td>avocado oil</td>
<td>133.7</td>
<td>soft</td>
<td>fair</td>
<td>yes</td>
<td>no</td>
<td>amazing!</td>
</tr>
<tr>
<td>coconut oil</td>
<td>191.1</td>
<td>hard</td>
<td>great</td>
<td>yes</td>
<td>no</td>
<td>fair</td>
</tr>
<tr>
<td>castor oil</td>
<td>128.6</td>
<td>soft</td>
<td>fair</td>
<td>yes</td>
<td>yes</td>
<td>great</td>
</tr>
<tr>
<td>olive oil</td>
<td>135.3</td>
<td>soft</td>
<td>good</td>
<td>no</td>
<td>no</td>
<td>great</td>
</tr>
<tr>
<td>palm oil</td>
<td>142</td>
<td>hard</td>
<td>great</td>
<td>no</td>
<td>yes</td>
<td>fair</td>
</tr>
<tr>
<td>peanut oil</td>
<td>137</td>
<td>soft</td>
<td>fair</td>
<td>no</td>
<td>yes</td>
<td>great</td>
</tr>
<tr>
<td>soybean oil</td>
<td>135.9</td>
<td>soft</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>fair</td>
</tr>
<tr>
<td>sweet almond oil</td>
<td>137.3</td>
<td>soft</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>amazing!</td>
</tr>
<tr>
<td>jojoba oil</td>
<td>69.5</td>
<td>soft</td>
<td>fair</td>
<td>no</td>
<td>yes</td>
<td>great</td>
</tr>
<tr>
<td>kukui nut oil</td>
<td>135.5</td>
<td>soft</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>great</td>
</tr>
<tr>
<td>lard</td>
<td>138.7</td>
<td>hard</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>fair</td>
</tr>
<tr>
<td>tallow</td>
<td>140.5</td>
<td>hard</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>fair</td>
</tr>
</tbody>
</table>

Lye Calculation

<table>
<thead>
<tr>
<th>oil or fat (acid)</th>
<th>SAP</th>
<th>Hard/Soft</th>
<th>cleansing</th>
<th>fluffy lather</th>
<th>stable lather</th>
<th>skin care</th>
</tr>
</thead>
<tbody>
<tr>
<td>avocado oil</td>
<td>133.7</td>
<td>soft</td>
<td>fair</td>
<td>yes</td>
<td>no</td>
<td>amazing!</td>
</tr>
<tr>
<td>coconut oil</td>
<td>191.1</td>
<td>hard</td>
<td>great</td>
<td>yes</td>
<td>no</td>
<td>fair</td>
</tr>
<tr>
<td>castor oil</td>
<td>128.6</td>
<td>soft</td>
<td>fair</td>
<td>yes</td>
<td>yes</td>
<td>great</td>
</tr>
<tr>
<td>olive oil</td>
<td>135.3</td>
<td>soft</td>
<td>good</td>
<td>no</td>
<td>no</td>
<td>great</td>
</tr>
<tr>
<td>palm oil</td>
<td>142</td>
<td>hard</td>
<td>great</td>
<td>no</td>
<td>yes</td>
<td>fair</td>
</tr>
<tr>
<td>peanut oil</td>
<td>137</td>
<td>soft</td>
<td>fair</td>
<td>no</td>
<td>yes</td>
<td>great</td>
</tr>
<tr>
<td>soybean oil</td>
<td>135.9</td>
<td>soft</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>fair</td>
</tr>
<tr>
<td>sweet almond oil</td>
<td>137.3</td>
<td>soft</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>amazing!</td>
</tr>
<tr>
<td>jojoba oil</td>
<td>69.5</td>
<td>soft</td>
<td>fair</td>
<td>no</td>
<td>yes</td>
<td>great</td>
</tr>
<tr>
<td>kukui nut oil</td>
<td>135.5</td>
<td>soft</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>great</td>
</tr>
<tr>
<td>lard</td>
<td>138.7</td>
<td>hard</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>fair</td>
</tr>
<tr>
<td>tallow</td>
<td>140.5</td>
<td>hard</td>
<td>good</td>
<td>no</td>
<td>yes</td>
<td>fair</td>
</tr>
</tbody>
</table>

The SAP column (Saponification Value) shows how many milligrams of base is required to completely saponify 1 gram of an acid.
Lye Calculation

• According to our saponification table, coconut oil has an SAP value of 191.1. This means that it takes exactly 191.1 milligrams of lye in order to saponify 1000 milligrams of coconut oil.

• We use these numbers to determine the amount of lye needed in a recipe.

<table>
<thead>
<tr>
<th>oil or fat (acid)</th>
<th>SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>coconut oil</td>
<td>191.1</td>
</tr>
</tbody>
</table>
Lye Calculation

• 191.1 milligrams of lye is needed to saponify 1000 milligrams of coconut oil.
• To make the units of measurement the same, we take 191.1 milligrams/1000 and 1000 milligrams/1000 to get values that are both in milligrams.
• .1911 milligrams of lye is needed to saponify 1 milligram of coconut oil.
• Now that the lye and coconut oil are the same unit of measurement, we use the new SAP value of .1911 and multiply it by the weight of the oil being used.
• For example, the recipe calls for 2 pounds of coconut oil. To find out the amount of lye needed to fully saponify the 2 pounds multiply 2 times .1911.
• Exactly .382 pounds of lye is needed to saponify 2 pounds of coconut oil.
Lye Calculation

• 133.7 milligrams of lye is needed to saponify 1000 milligrams of avocado oil.

<table>
<thead>
<tr>
<th>oil or fat (acid)</th>
<th>SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>avocado oil</td>
<td>133.7</td>
</tr>
</tbody>
</table>
Lye Calculation

- 133.7 milligrams of lye is needed to saponify 1000 milligrams of avocado oil.
- 133.7 milligrams/1000 and 1000 milligrams/1000 to get values that are both in milligrams.
Lye Calculation

- 133.7 milligrams of lye is needed to saponify 1000 milligrams of avocado oil.
- 133.7 milligrams/1000 and 1000 milligrams/1000 to get values that are both in milligrams.
- .1337 milligrams of lye is needed to saponify 1 milligram of avocado oil.

<table>
<thead>
<tr>
<th>oil or fat (acid)</th>
<th>SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>avocado oil</td>
<td>133.7</td>
</tr>
</tbody>
</table>
Lye Calculation

- 133.7 milligrams of lye is needed to saponify 1000 milligrams of avocado oil.
- 133.7 milligrams/1000 and 1000 milligrams/1000 to get values that are both in milligrams.
- .1337 milligrams of lye is needed to saponify 1 milligram of avocado oil.
- Now that the lye and avocado oil are the same unit of measurement, we use the new SAP value of .1337 and multiply it by the weight of the oil being used.
Lye Calculation

- 133.7 milligrams of lye is needed to saponify 1000 milligrams of avocado oil.
- 133.7 milligrams/1000 and 1000 milligrams/1000 to get values that are both in milligrams.
- .1337 milligrams of lye is needed to saponify 1 milligram of avocado oil.
- Now that the lye and avocado oil are the same unit of measurement, we use the new SAP value of .1337 and multiply it by the weight of the oil being used.
- For example, the recipe calls for 3 pounds of avocado oil. To find out the amount of lye needed to fully saponify the 3 pounds multiply 3 times .1337
Lye Calculation

- 133.7 milligrams of lye is needed to saponify 1000 milligrams of avocado oil.
- 133.7 milligrams/1000 and 1000 milligrams/1000 to get values that are both in milligrams.
- .1337 milligrams of lye is needed to saponify 1 milligram of avocado oil.
- Now that the lye and avocado oil are the same unit of measurement, we use the new SAP value of .1337 and multiply it by the weight of the oil being used.
- For example, the recipe calls for 3 pounds of avocado oil. To find out the amount of lye needed to fully saponify the 3 pounds multiply 3 times .1337.
- Exactly .4011 pounds of lye is needed to saponify 3 pounds of avocado oil.
Calculating Superfat

The SAP value on the saponification table tells you exactly how much lye is needed in order to change 100% of the fats or oils into soap. In actuality, we don’t want to do this. If all the ingredients were completely saponified your soap could be far too caustic and harsh.

This is where superfatting comes. Superfatting is when you set aside a certain percentage of fats and oils within your recipe to remain unsaponified by discounting your lye by a certain percentage.

The key is balance. If too much oil is left unsaponified (too large of a lye discount), your soap may become rancid + too little may leave your soap too soft and harsh. 5-10% is usually a good range.
Calculating Superfat

• The final step in the lye calculation equation is to multiply the amount of lye needed to completely saponify the fats and oils by .90 - .95 depending on how much you want to superfat.
Calculating Superfat

• The final step in the lye calculation equation is to multiply the amount of lye needed to completely saponify the fats and oils by .90 - .95 depending on how much you want to superfat.

• The recipe calls for 2 pounds of coconut oil. According to our calculations, exactly .3822 pounds of lye is needed to saponify 2 pounds of coconut oil.
Calculating Superfat

• The final step in the lye calculation equation is to multiply the amount of lye needed to completely saponify the fats and oils by .90 - .95 depending on how much you want to superfat.

• The recipe calls for 2 pounds of coconut oil. According to our calculations, exactly .3822 pounds of lye is needed to saponify 2 pounds of coconut oil.

• .3822 pounds of lye x .95 = .3631
Calculating Superfat

• The final step in the lye calculation equation is to multiply the amount of lye needed to completely saponify the fats and oils by .90 - .95 depending on how much you want to superfat.

• The recipe calls for 2 pounds of coconut oil. According to our calculations, exactly .3822 pounds of lye is needed to saponify 2 pounds of coconut oil.

• .3822 pounds of lye x .95 = .3631

• .3631 oz of lye is needed to saponify 2 pounds of coconut oil at a 5% superfat.
Calculating Superfat

• The recipe calls for 3 pounds of avocado oil. According to our calculations, exactly .4011 pounds of lye is needed to saponify 3 pounds of avocado oil.
Calculating Superfat

• The recipe calls for 3 pounds of avocado oil. According to our calculations, exactly .4011 pounds of lye is needed to saponify 3 pounds of avocado oil.

• .4011 pounds of lye x .92 = .369
Calculating Superfat

• The recipe calls for 3 pounds of avocado oil. According to our calculations, exactly .4011 pounds of lye is needed to saponify 3 pounds of avocado oil.
• .4011 pounds of lye x .92 = .369
• .369 oz of lye is needed to saponify 2 pounds of avocado oil at a 8% superfat.
Soap Colorants
Soap Colorants

There are an infinite number of ways to color your soap.

Common colorants include:
Soap Colorants

Micas are a group of silicate minerals that are widely found in different groups of rocks.
Soap Colorants

Micas are a group of silicate minerals that are widely found in different groups of rocks.

Often occurs as flakes, scrapes or sheets.
Soap Colorants

Micas are a group of silicate minerals that are widely found in different groups of rocks.

Often occurs as flakes, scrapes or sheets. Stable as it relates to moisture and temperature.
Soap Colorants

Mica used in soap making is a white powder that is coated with FD&C colorants, pigments or a combination of both.
Soap Colorants

Mica used in soap making is a white powder that is coated with FD&C colorants, pigments or a combination of both.

Pros: Non clumping in cold process soap.
Cons: Not all are cp soap stable and may morph.
Soap Colorants

Pigments
Soap Colorants

A pigment is a material that changes the color of reflected or transmitted light.
Soap Colorants

Pigments are generally earthy colors such as yellows, oranges, browns and blacks.

Pros: Stable in cold process soap.
Cons: Limited color choices and can clump.
Soap Colorants

Natural Colorants
Soap Colorants

Natural Colorants

Alkanet Root
Purple
Soap Colorants

Natural Colorants

Alkanet Root
Purple

Anatto
Yellow
Soap Colorants

Natural Colorants

Alkanet Root
Purple

Annatto
Yellow

Cocoa
Brown
Soap Colorants

Natural Colorants

Alkanet Root
Purple

Annatto
Yellow

Cocoa
Brown

Beet Root
Salmon
Soap Colorants

Natural Colorants

- Alkanet Root: Purple
- Annatto: Yellow
- Cocoa: Brown
- Beet Root: Salmon
- Dandelion: Green
Scenting Your Soap
Scenting Your Soap

MSDS is a Material Safety Data Sheet

For each material used by the soapmaker, an MSDS should be available for reference by employees. The sheet contains information on the hazardous properties of the material, first aid measures, and other important information. The sheets are available from vendors who sell these materials.
Scenting Your Soap

• An essential oil is an undiluted volatile oil extracted from plant matter by distillation, expression, or solvent extraction.
Scenting Your Soap

• An essential oil is an undiluted volatile oil extracted from plant matter by distillation, expression, or solvent extraction.

• A fragrance oil is a blended synthetic aroma compound that is diluted with a carrier such as propylene glycol, vegetable oil or mineral oil.
Scenting Your Soap

• An essential oil is an undiluted volatile oil extracted from plant matter by distillation, expression, or solvent extraction.

• A fragrance oil is a blended synthetic aroma compound that is diluted with a carrier such as propylene glycol, vegetable oil or mineral oil.

• The flash point is the lowest temperature at which a liquid may be ignited. The ignition source might be a spark, flame, or hot surface.
Scenting Your Soap

Be sure:

• Your scent is skin safe
• To only use the recommend percentage based on your soap recipe
• Your scent is a non irritant to your end user
Design Techniques
Design Techniques

In the Pot Swirl
Design Techniques

In the Pot Swirl

Hanger Swirl
Design Techniques

- In the Pot Swirl
- Hanger Swirl
- Mantra Swirl
Design Techniques

In the Pot Swirl

Hanger Swirl

Mantra Swirl

Spoon Swirl
Curing and Storage
Curing and Storage

Why does a soap need to cure for 4-6 weeks?
Curing and Storage

Why does a soap need to cure for 4-6 weeks?

- Actually it does not.
- After saponification, soap is usable.
Curing and Storage

What happens while it is curing?
Curing and Storage

What happens while it is curing?

• Water is evaporated and the soap becomes milder.
Curing and Storage

What happens while it is curing?

• Water is evaporated and the soap becomes milder.

• To determine that a soap has cured to a constant weight, weigh a bar immediately after cutting and then weigh it once a week (or more frequently) until its weight no longer changes.
Curing and Storage

- Soap should be cured in a cool, dry location that has constant airflow.
Curing and Storage

• Soap should be cured in a cool, dry location that has constant airflow.
• Use a dehumidifier in high moisture areas.
Curing and Storage

• Soap should be cured in a cool, dry location that has constant airflow.
• Use a dehumidifier in high moisture areas.
• Cold process soaps can be packaged many ways but one that allows the soap to breathe is best.
Cold Process Soapmaking
Intensive

Are there any questions?

Catherine McGinnis
www.soaping101.com